S320p.46 — CARMENES: A Spectroscopic Survey of M Dwarfs and their Planets

Date & Time

Aug 10th at 6:00 PM until 7:30 PM




Rating ( votes)

Author(s): Andreas Quirrenbach2, CARMENES Consortium1

Institution(s): 1. 11 Institutions, 2. Landessternwarte, Zentrum für Astronomie der Universität Heidelberg

CARMENES (Calar Alto high-Resolution search for M dwarfs with Exo-earths with Near-infrared and optical Echelle Spectrographs) is a next-generation instrument currently under construction for the 3.5m telescope at the Calar Alto Observatory by a consortium of eleven Spanish and German institutions. Commissioning of CARMENES will start in April 2015. CARMENES will conduct a 600-night exoplanet survey targeting ~300 M dwarfs. An important and unique feature of the CARMENES instrument is that it consists of two separate échelle spectrographs, which together cover the wavelength range from 0.55 to 1.7 μm at a spectral resolution of R = 82,000. The spectrographs are fed by fibers from the Cassegrain focus of the telescope.
The main scientific objective of CARMENES is to carry out a survey of late-type main sequence stars with the goal of detecting low-mass planets in their habitable zones (HZs). In the focus of the project are very cool stars later than spectral type M4 and moderately active stars. We aim at being able to detect a 2M planet in the HZ of an M5 star, which requires a long-term radial velocity precision of 1ms−1 per measurement. For stars later than M4 (M < 0.25M), such precision will yield detections of super-Earths of 5M and smaller inside the entire width of the HZ. The CARMENES survey will thus provide a comprehensive overview of planetary systems around nearby Northern M dwarfs. By reaching into the realm of Earth-like planets, it will provide a treasure trove for follow-up studies probing their habitability.
At the same time, the CARMENES survey will generate a unique data set for studies of M star atmospheres, rotation, and activity. The spectra will cover important diagnostic lines for activity (Hα, Na I D1 and D2, and the Ca II infrared triplet), as well as FeH lines around 10,000Å, from which the magnetic field can be inferred. Correlating the time series of these features with each other, and with wavelength-dependent radial velocities, will provide new insight into the physical properties of M dwarf atmospheres, and will provide excellent discrimination between planetary companions and stellar radial velocity "noise".