S317.4.06 — Inhomogeneous chemical enrichment in the Galactic Halo

Date & Time

Aug 4th at 12:15 PM until 12:30 PM




Rating ( votes)

Author(s): Chiaki Kobayashi1

Institution(s): 1. University of Hertfordshire

In a galaxy, chemical enrichment takes place in an inhomogeneous fashion, and the Galactic Halo is one of the places where the inhomogeneous effects are imprinted and can be constrained from observations. I show this using my chemodynamical simulations of Milky Way type galaxies. The scatter in the elemental abundances is originated from radial migration, merging/accretion of satellite galaxies, local variation of star formation and chemical enrichment, and intrinsic variation of nucleosynthesis yields. In the simulated galaxies, there is no strong age-metallicity relations. This means that the most metal poor stars are not always the oldest stars, and can be formed in chemically unevolved clouds at later times. The long-lifetime sources of chemical enrichment such as asymptotic giant blanch stars or neutron star mergers can contribute the abundance patterns of extremely metal-poor stars, which are in good agreement with observations.