FM10.5.02 — Modeling abundances in star forming galaxies

Date & Time

Aug 12th at 4:30 PM until 5:00 PM




Rating ( votes)

Author(s): Chiaki Kobayashi1

Institution(s): 1. University of Hertfordshire

Heavy elements are produced from various types of supernovae (and AGB stars). I first show that elemental abundances of extremely metal-poor stars are consistent not with pair-instability supernovae but with faint supernovae. Then I introduce subclasses of Type Ia supernovae such as SN 2002cx-like objects and sub-Chandrasekhar mass explosions. These "minor" supernovae are important in the early Universe or metal-poor systems such as dwarf spheroidal galaxies. With "major" chemical enrichment sources, I show cosmic chemical enrichment in our cosmological, hydrodynamical simulations. The feedback from active galactic nuclei (AGN) is also included with a new model for the formation of black holes motivated by the first star formation. AGN-driven outflows transport metals into the circumgalactic medium and the intergalactic medium. Nonetheless, the metallicity changes of galaxies are negligible, and the mass-metallicity relations, which are mainly generated by supernova feedback at the first star burst, are preserved. Within galaxies, metallicity radial gradients are produced, which can be affected by AGN feedback but are more sensitive to the merging histories. We find a weak correlation between the gradients and galaxy mass, which is consistent with available observations. These simulations also provide predictions of supernova/hypernova/GRB rates and the properties of their host galaxies.