P1.57 — Efficient Selection and Classification of Infrared Excess Emission Stars Based on AKARI and 2MASS Data

Date & Time

Aug 4th at 6:00 PM until 6:00 PM

Track

Presentations 

Location

Rating ( votes)

Author(s): Jinzeng Li1, Yafang Huang1

Institution(s): 1. National Astronomical Observatory, Chinese Academy of Sciences

The selection of young stellar objects (YSOs) based on excessive emission in the infrared is easily contaminated by post-main-sequence stars and various types of emission line stars with similar properties. We define here stringent criteria for an efficient selection and classification of stellar sources with infrared excess emission based on combined 2MASS and AKARI colors. First of all, bright dwarfs and giants with known spectral types were selected from the Hipparcos Catalogue and cross-identified with the 2MASS and AKARI Point Source Catalogues to produce the main-sequence and the post-main-sequence tracks, which appear as expected as tight tracks with very small dispersion. However, several of the main-sequence stars indicate excess emission in the color space. Further investigations based on the SIMBAD data help to clarify their nature as classical Be stars, which are found to be located in a well isolated region on each of the color–color (C–C) diagrams. Several kinds of contaminants were then removed based on their distribution on the C–C diagrams. A test sample of Herbig Ae/Be stars and classical T Tauri stars were cross-identified with the 2MASS and AKARI catalogs to define the loci of YSOs with different masses on the C–C diagrams. Well classified Class I and Class II sources were taken as a second test sample to discriminate between various types of YSOs at possibly different evolutionary stages. This helped to define the loci of different types of YSOs and a set of criteria for selecting YSOs based on their colors in the near- and mid-infrared. Candidate YSOs toward IC 1396 indicating excess emission in the near-infrared were employed to verify the validity of the new source selection criteria defined based on C–C diagrams compiled with the 2MASS and AKARI data. Optical spectroscopy and spectral energy distributions of the IC 1396 sample yield a clear identification of the YSOs and further confirm the criteria defined for exploring the nature and properties of unknown excess mission sources in the infrared without optical identification.