P1.08 — Does the Newtonian Gravity "Constant" G Vary?

Date & Time

Aug 4th at 6:00 PM until 6:00 PM




Rating ( votes)

Author(s): Peter D Noerdlinger1

Institution(s): 1. Space Science Institute

A series of measurements of Newton's gravity constant, G, dating back as far as 1893, yielded widely varying values, the variation greatly exceeding the stated error estimates (Gillies, 1997; Quinn, 2000, Mohr et al 2008). The value of G is usually said to be unrelated to other physics, but we point out that the 8B Solar Neutrino Rate ought to be very sensitive. Improved pulsar timing could also help settle the issue as to whether G really varies. We claim that the variation in measured values over time (1893-2014 C.E.) is a more serious problem than the failure of the error bars to overlap; it appears that challenging or adjusting the error bars hardly masks the underlying disagreement in central values. We have assessed whether variations in the gravitational potential due to (for example) local dark matter (DM) could explain the variations. We find that the required potential fluctuations could transiently accelerate the Solar System and nearby stars to speeds in excess of the Galactic escape speed. Previous theories for the variation in G generally deal with supposed secular variation on a cosmological timescale, or very rapid oscillations whose envelope changes on that scale (Steinhardt and Will 1995). Therefore, these analyses fail to support variations on the timescale of years or spatial scales of order parsecs, which would be required by the data for G. We note that true variations in G would be associated with variations in clock rates (Derevianko and Pospelov 2014; Loeb and Maoz 2015), which could mask changes in orbital dynamics. Geringer-Sameth et al (2014) studied γ-ray emission from the nearby Reticulum dwarf galaxy, which is expected to be free of "ordinary" (stellar, black hole) γ-ray sources and found evidence for DM decay. Bernabei et al (2003) also found evidence for DM penetrating deep underground at Gran Sasso. If, indeed, variations in G can be tied to variations in gravitational potential, we have a new tool to assess the DM density.