FM5.6.03 — From Cosmic Microwave Background to Cosmic Infrared Background: dusty star-formation in the making

Date & Time

Aug 13th at 9:15 AM until 9:45 AM




Rating ( votes)

Author(s): Guilaine Lagache1

Institution(s): 1. Laboratoire d'Astrophysique de Marseille (LAM)

How the clumpy structured universe that we see today evolved from the smoothly distributed matter that existed during the dark ages is one of the most pressing questions of modern Cosmology. In the last few years, it has become clear that dusty star-forming galaxies are participating to this major change. Indeed they are a critical player in the assembly of stellar mass and the evolution of massive galaxies.
Dusty star-forming galaxies at high redshift are very difficult to detect individually because they are so faint and numerous (compared to the angular resolution achievable in the far-IR to mm), that confusion plagues observations substantially. As a result, CMB experiments, such as Planck, can only see the brightest objects that represent the tip of the iceberg in terms of galaxy mass halos and star formation rates. But fortunately, those experiments are sensitive enough to measure the cumulative IR emission from all galaxies throughout cosmic history, the cosmic IR background. The anisotropies detected in this background trace the large-scale distribution of star-forming galaxies and, to some extent, the underlying distribution of the dark matter haloes in which galaxies reside. It is so bright that it represents (together with the shot noise) the main foreground contaminant to CMB temperature maps at small scales.
I will review the current measurements of CIB anisotropies in Planck, but also in SPT, ACT and Herschel. I will discussed what we've learned from these measurements in the framework of galaxy evolution. I will show that most of the information from CIB anisotropies alone has been extracted; the future is now in cross-correlation. Because dusty galaxies trace the underlying dark matter, the CIB will correlate with any other tracer of the same dark matter field, provided that both overlap in redshift. The potential of Planck maps, covering the whole sky, is tremendous. A good illustration of this promising future is the fact that the Planck discovered strong correlation between the CIB and the lensing of the CMB led to the first detection of CMB polarization B-modes due to gravitational lensing.