S320.2.03 — Multi-wavelength diagnostics and modelling of the emission during a B6.4 flare of August 20, 2005

Date & Time

Aug 11th at 11:10 AM until 11:22 AM




Rating ( votes)

Author(s): Arun Kumar Awasthi2, Arkadiusz Berlicki2, Powel Rudawy2, Petr Heinzel1

Institution(s): 1. Astronomical Institute, Academy of Sciences of the Czech Republic, 2. University of Wroclaw

We study the temporal, spatial and spectral evolution of multi-wavelength emission observed during a B6.4 flare occurred on August 20, 2005 with the motivation to outline the thermal and non-thermal processes during the precursor and gradual phase of the flare. Precursor phase is designated as the gradual enhancement of soft X-ray emission prior to onset of the impulsive phase. Observations from several space and ground based observatories viz. RHESSI, TRACE, GONG, SoHO/EIT and NoRP are included in this study. Temporal evolution of X-ray emission does not show the presence of hard X-rays (>12 keV) emission during the precursor phase of the flare. We synthesized X-ray images in 6-12 keV from RHESSI observations, which show several discrete sources during the precursor phase. Following to this, one of these sources pronounced during the main phase of the flare. We carry out in-depth analysis of chromospheric response in various phases of the flare employing high temporal cadence images of the Sun in Hα line centre as well as wings obtained from the Multi-channel Subtractive Double Pass Spectrograph (MSDP) at the Bialkow Observatory of the University of Wroclaw, Poland. Our analysis of Hα images during the main phase of the flare suggests localized emission in the form of kernels. On the contrary, we note extended and diffused source morphology of emitting region during the precursor phase of the flare. We also study various kinematic properties of different structures visible in the Hα images in the line centre as well as wings. In addition, the correlation of the relative timing of X-ray and Hα emission profile is performed to estimate the delay in the chromospheric response during different phases of flare. Further, we employ thermal plasma parameters estimated during the precursor and gradual phase to model the associated Hα emission. For the modeling we employ NLTE numerical codes modified for flare conditions. The modeled and observed flare emission parameters are then compared. Finally, we propose a unified schematic scenario for the trigger and energy release during this low-intensity class flare.