S320p.25 — Solar and interplanetary signatures of declining of solar magnetic fields: Implications to the next solar cycle 25

Date & Time

Aug 10th at 6:00 PM until 7:30 PM

Track

Presentations 

Location

Rating ( votes)

Author(s): Susanta Kumar Bisoi2, P Janardhan2, S Ananthakrishnan3, M Tokumaru1, K Fujiki1

Institution(s): 1. Nagoya Univsersity, Japan, 2. Physical Research Laboratory, India, 3. Pune University, India

Our detailed study of solar surface magnetic fields at high-latitudes, using magnetic synoptic magnetograms of NSO/Kitt Peak observatory from 1975-2014, has shown a steady decline of the field strength since mid-1990's until mid-2014, i.e. the solar maximum of cycle 24. We also found that magnetic field strength at high-latitudes declines after each solar cycle maximum, and since cycle 24 is already past its peak implies that solar surface magnetic fields will be continuing to decline until solar minimum of cycle 24. In addition, interplanetary scintillation (IPS) measurements of solar wind micro-turbulence levels, from Solar and Terrestrial Environment Laboratory (STEL), Japan, have also shown a steady decline in sync with the declining surface fields. Even the heliospheric magnetic fields (HMF) at 1 AU have been declined much below the previously proposed floor level of HMF of ~4.6 nT. From study of a correlation between the high-latitude surface fields and the HMF at the last four solar minima we found a floor value of HMF of ~3.2 nT. Using the above correlation and the fact that the high-latitude surface fields is expected to decline until the minimum of cycle 24, we estimate the value of the HMF at the minimum of cycle 24 will be 3.8 ± 0.2 nT and the peak sunspot number for solar cycle 25 will be 56±12 suggesting a weak sunspot activity to be continued in cycle 25 too.