DHp.2.09 — Evidence for Decay of Turbulence by MHD Shocks in the ISM via CO Emission

Date & Time

Aug 10th at 6:00 PM until 6:00 PM

Track

Presentations 

Location

Rating ( votes)

Author(s): Rebecca Larson1, Neal J Evans1, Joel Green1, Yao-Lun Yang1

Institution(s): 1. University of Texas at Austin

Star formation rates in molecular clouds are about 100 times slower than simple estimates based on Jeans mass and free-fall time arguments. A leading candidate to explain the slowness of star formation is MHD turbulence. Such turbulence should decay via low-velocity shocks. Until recently, these shocks have resisted detection because of confusion with emission excited by PDRs. We present evidence for shocks at levels predicted from simulations (Pon et al. 2012), and distinguished from PDR emission by the pattern of emission in rotational levels of CO up to J = 8. The data come from observations of sub-millimeter rotational transitions of CO in molecular clouds. We find evidence of the shocks expected for dissipation of MHD turbulence in material not associated with any protostar, at a density of about 103 cm-3 to 103.5 cm-3, a shock velocity of 2 to 3 km s-1, and a magnetic field strength of 4 to 8 μG. We calculate the dissipation timescale to be around 1.5 million years which is about 3 times less than the flow crossing timescale and agrees with predictions by Pon et al. 2012. Transitions of CO observed close to active sites of star formation, but not within outflows, can trace turbulent dissipation of shocks stirred by formation processes. Although the transitions are difficult to detect at individual positions, our Herschel-SPIRE survey of protostars provides a grid of spatially-distributed spectra within molecular clouds. We averaged all spatial positions away from known outflows near seven protostars from a Herschel Cycle 2 open time program ("COPS'', PI: J. Green). We find significant agreement with predictions of models of turbulent dissipation in slightly denser (103.5 cm-3) material and stronger magnetic field (24 μG) than in the general molecular cloud.